翻訳と辞書 |
representation theory of finite groups : ウィキペディア英語版 | representation theory of finite groups In mathematics, representation theory is a technique for analyzing abstract groups in terms of groups of linear transformations. See the article on group representations for an introduction. This article discusses the representation theory of groups that have a finite number of elements. ==Basic definitions== All the linear representations in this article are finite-dimensional and assumed to be complex unless otherwise stated. A representation of ''G'' is a group homomorphism ρ:''G'' → GL(''n'',C) from ''G'' to the general linear group GL(''n'',C). Thus to specify a representation, we just assign a square matrix to each element of the group, in such a way that the matrices behave in the same way as the group elements when multiplied together. We say that ρ is a real representation of G if the matrices are real, i.e. if ρ(''G'') ⊂ GL(''n'',R).
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「representation theory of finite groups」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|